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Abstract—Metric learning has attracted wide attention in face
and kinship verification and a number of such algorithms have
been presented over the past few years. However, most existing
metric learning methods learn only one Mahalanobis distance
metric from a single feature representation for each face image
and cannot make use of multiple feature representations directly.
In many face-related tasks, we can easily extract multiple features
for a face image to extract more complementary information,
and it is desirable to learn distance metrics from these multiple
features so that more discriminative information can be exploited
than those learned from individual features. To achieve this, we
present a large-margin multi-metric learning (LM3L) method for
face and kinship verification, which jointly learns multiple global
distance metrics under which the correlations of different feature
representations of each sample are maximized, and the distance
of each positive pair is less than a low threshold and that of each
negative pair is greater than a high threshold. To better exploit
the local structures of face images, we also propose a local metric
learning (LML) and a local large-margin multi-metric learning
(L2M3L) methods to learn a set of local metrics. Experimental
results on three face datasets show that the proposed methods
achieve very competitive results compared with the state-of-the-
art methods.

Index Terms—Local metric learning, multi-metric learning,
face verification, kinship verification.

I. INTRODUCTION

LEARNING a promising distance metric from data itself
plays an important role in computer vision and pattern

recognition. Metric learning techniques have been widely used
in many visual analysis applications such as face recogni-
tion [1], [2], image classification [3], human activity recog-
nition [4], and kinship verification [5]. Over the past decade,
a large number of metric learning algorithms have been
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proposed and some of them have been successfully applied
to face and kinship verification [6], [1], [5], [7]. In facial
image analysis, we are usually able to extract multiple feature
representations for each face image and it is desirable to learn
distance metrics from these multiple feature representations
such that more discriminative information can be exploited
than those learned from individual features. A widely used
solution is to concatenate different features together into a
new feature vector and then employ existing distance metric
learning algorithms on this concatenated vector directly. How-
ever, this concatenation is not physically meaningful because
each feature has its own statistical characteristic, and such a
simple concatenation ignores the diversity of multiple features
and cannot effectively explore the complementary information
among the multiple features.

In this paper, we first present a large-margin multi-metric
learning (LM3L) method for face verification and kinship
verification. Unlike the methods of learning a distance metric
on concatenated feature vectors, we collaboratively learn mul-
tiple distance metrics from multiple feature representations of
data, where one distance metric is learned for each feature
and the correlations of different feature representations of
each sample are maximized, and under the learned metric
spaces the distance of each positive pair is less than a smaller
threshold and that of each negative face pair is more than
a larger threshold, respectively. In addition, we also propose
two local distance metric learning approaches, i.e., local metric
learning (LML) and a local large-margin multi-metric learning
(L2M3L), to better exploit the local manifold structures of
face images. Experimental results on three widely used face
datasets show that our methods can obtain competitive results
compared with state-of-the-art methods. See Fig. 1 of [8] for
the basic pipeline of our multi-metric learning methods.

This paper is an extension to our conference paper [8],
where we only learn a global distance metric for each single-
view feature of samples. The new contributions of this paper
are summarized as: 1) we have presented a local metric
learning (LML) for each single-view feature by jointly learning
a global and several local metrics to better exploit the local
manifold structure that face images usually lie on; 2) we have
proposed a local large-margin multi-metric learning (L2M3L)
method by integrating the LML into the LM3L method, and
the LM3L is a special case of the L2M3L method where
only multiple global metrics are jointly learned; and 3) we
have conducted more experiments on three datasets for face
and kinship verification tasks to show the effectiveness of the
proposed methods.
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II. RELATED WORK

A. Face and Kinship Verification

These days face verification under uncontrolled conditions
is a mainstream task of face recognition [9], [1], [10], [2], [11],
[12], [13], which aims to determine if two face images/videos
are from the same subject or not. Kinship verification from fa-
cial images is another challenging face analysis problem [14],
[15], [16], [17], [18], and its goal is to decide whether there is a
kinship relation between two individuals via their face images.
In recent years, many methods have been proposed for face
and kinship verification under uncontrolled conditions [10],
[6], [19], [20], [21], [22]. Most of these methods mainly focus
on feature representation and similarity/metric learning, which
are two important steps in the pipeline of the face/kinship
verification. Typical feature descriptors include local binary
pattern (LBP) [23], probabilistic elastic matching (PEM) [24],
etc. The similarity/metric learning step aims to learn one
or more metrics from the training data to help improve the
verification accuracy [1], [19], [17], [20]. In this paper, we pro-
pose a multi-metric learning method to learn multiple distance
metrics for face and kinship verification under uncontrolled
conditions.

B. Metric Learning

A number of metric learning methods have been introduced
in the literature recently, and most of them seek an appropriate
global distance metric to exploit discriminative information
from the training samples. Representative metric learning
methods include large margin nearest neighbor (LMNN) [25],
information theoretic metric learning (ITML) [26], logistic
discriminant metric learning (LDML) [1], pairwise constrained
component analysis (PCCA) [27], neighborhood repulsed met-
ric learning (NRML) [5], similarity metric learning (SM-
L) [19], and deep metric learning [28], [29]. Recently several
local metric learning methods [30], [31] have been proposed
to model the local specificities of the data points by learning a
set of local distance metrics for a single feature. While these
methods have achieved encouraging performance in face veri-
fication, most of them learn one global metric or multiple local
metrics from the single-view feature representation and can-
not exploit multi-view feature representations directly. Unlike
these single feature based methods, we present a multi-metric
learning approach by collaboratively learning multiple global
and local distance metrics to better exploit complementary
information from multiple feature representations for face and
kinship verification in the wild.

III. LARGE-MARGIN MULTI-METRIC LEARNING

Before detailing our method, we first list the notations used
in this paper. Bold capital letters, e.g., X1, X2, represent
matrices, and bold lower case letters, e.g., x1, x2, represent
column vectors. Given a training set containing N data points,
i.e., X = {xi}Ni=1, each data point of this set can be easily
represented by the multiple types of features, e.g., color,
texture, shape, etc. Let Xk = {xki ∈ Rdk}Ni=1 be the k-th
feature set of X from the k-th type of feature representation,

and let Xk = [xk1 ,x
k
2 , · · · ,xkN ] be the feature matrix of set

Xk, where xki is the feature vector of the data point xi in the
k-th feature space, k = 1, 2, · · · ,K; K is the total number of
types of features; and dk is feature dimension of xki .

A. Problem Formulation

For a feature set Xk = {xki ∈ Rdk}Ni=1 from the k-th feature
representation, the squared Mahalanobis distance between a
pair of samples xki and xkj can be computed as:

d2Mk
(xki ,x

k
j ) = (xki − xkj )

TMk(x
k
i − xkj ), (1)

where Mk ∈ Rdk×dk is a positive definite matrix.
We seek a distance metric Mk such that the squared distance

d2Mk
(xki ,x

k
j ) for a face pair xki and xkj in the kth feature space

should be smaller than a given threshold µk − τk (µk > τk >
0) if two samples are from the same subject, and larger than
a threshold µk + τk if these two samples are from different
subjects, which can be formulated as the following constraints:

yij
(
µk − d2Mk

(xki ,x
k
j )
)
> τk, (2)

where pairwise label yij = 1 if xki and xkj are from the same
category (or similar pair), and yij = −1 if they are from
different categories (or dissimilar pair). The parameter µk is an
absolute threshold to decide whether two samples are similar
pair or not. The parameter τk is a positive slack variable to
guarantee a margin (i.e., 2τk) between a similar pair and a
dissimilar pair.

To learn Mk, we define the constraints (2) by a hinge loss,
and formulate the following objective function to learn the
k-th distance metric, named single metric learning (SML):

min
Mk

Jk =
∑
i,j

h
(
τk − yij

(
µk − d2Mk

(xki ,x
k
j )
))
, (3)

where h(x) = max(x, 0) represents the hinge loss function.
The objective function (3) penalizes the violation of the
constraint d2Mk

(xki ,x
k
j ) > µk − τk for a similar pair and that

of the constraint d2Mk
(xki ,x

k
j ) < µk + τk for a dissimilar pair

by using the hinge loss.
Given a face image, it is easy to extract multiple features

for each image for multiple feature fusion. These features
extracted from the same face image are usually highly corre-
lated to each other even if they characterize face images from
different aspects [32]. For multiple feature fusion, these highly
correlated information should be preserved because they usu-
ally reflect the intrinsic information of samples. An important
principle to perform multi-feature metric learning is to jointly
learn multiple distance metrics by preserving the correlation
between different feature pairs. Motivated by the success of
canonical correlation analysis (CCA), we propose a large-
margin multi-metric learning method to seek the commonality
of multiple feature representations, which is consistent to the
CCA-based multiple feature fusion methods [32], [33].

The proposed large-margin multi-metric learning (LM3L)
method aims to learn K distance metrics {Mk ∈ Rdk×dk}Kk=1

for a multi-feature dataset, such that 1) the discriminative
information from each single feature can be exploited as
much as possible; and 2) the differences of different feature
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representations of each sample in the learned distance metrics
are minimized, because different features of each sample share
the same semantic label.

Since the difference computation of the sample xi from the
k-th and `-th (1 ≤ k, ` ≤ K, k 6= `) feature representations
relies on the distance metrics Mk and M`, which could
be different in dimensions, it is infeasible to compute them
directly. To address this, we use an alternative constraint to
reflect the relationships of different feature representations.
Since the distance between xki and xkj , and that of x`i and x`j
are expected to be as small as possible, hence, we formulate
the following objective function to constrain the interactions
of different distance metrics in our LM3L method:

min
{Mk, wk}Kk=1

J =
K∑
k=1

wk Jk

+ λ
K∑

k,`=1
k<`

∑
i,j

(
dMk

(xki ,x
k
j )− dM`

(x`i ,x
`
j)
)2
,

s.t.
K∑
k=1

wk = 1, wk ≥ 0, λ > 0, (4)

where wk is a nonnegative weighting parameter to reflect the
importance of the k-th feature in the whole objective function,
and λ weights the pairwise difference of the distance between
two samples xi and xj in the learned distance metrics Mk

and M`. The physical meaning of (4) is that we aim to learn
K distance metrics {Mk}Kk=1 under which the difference of
feature representations of each pair of face samples is enforced
to be as small as possible. The reason that a sample xi should
be close in different feature spaces (k and `) is to seek a
commonality of multiple features and make all the features
more robust, which is consistent to the CCA-based multiple
feature fusion methods.

Having obtained the multiple distance metrics {Mk}Kk=1

and their weights {wk}Kk=1, the distance between two multi-
feature data points xi and xj under the global metrics learned
by the LM3L is computed as:

d2LM3L(xi,xj) =
K∑
k=1

wk d
2
Mk

(xki ,x
k
j )

=
K∑
k=1

wk (xki − xkj )
TMk(x

k
i − xkj ). (5)

The trivial solution of (4) is wk = 1, which corresponds
to the minimum Jk over different feature representations,
and wk = 0 otherwise. This solution means that only one
single feature that yields the best verification accuracy is
selected, which does not satisfy our objective on exploring
the complementary property of multi-feature data.

To address this shortcoming, we modify wk to be wpk (p >

1), then the new objective function is rewritten as:

min
{Mk, wk}Kk=1

J =
K∑
k=1

wpk Jk

+ λ
K∑

k,`=1
k<`

∑
i,j

(
dMk

(xki ,x
k
j )− dM`

(x`i ,x
`
j)
)2
,

s.t.
K∑
k=1

wk = 1, wk ≥ 0, λ > 0. (6)

When p = 1, it is not easy to obtain the optimal wk.
From (17), we obtain J1 = J2 = · · · = JK = η, then wk
can be an arbitrary value in the interval [0, 1]. Thus, the
trivial solution is wk = 1 for the minimum Jk over different
feature representations, and wk = 1 otherwise. When p > 1,
we obtain a closed-form solution of wk by (19), and each
feature representation has a particular contribution to the final
metric learning.

B. Alternating Optimization

To the best of our knowledge, it is non-trivial to seek a
global optimal solution to (6) because there are K metrics
to be learned simultaneously. In this work, we employ an
iterative method by using the alternating optimization method
to obtain a local optimal solution. The alternating optimization
learns Mk and wk in an iterative manner. In our experiments,
we randomly select the order of different features to start the
optimization procedure and our tests show that the influence of
this order is not critical to the final verification performance.

1) Step 1: Fix w = [w1, w2, · · · , wK ], Update Mk: With
the fixed w, we can cyclically optimize (6) over different
features. We sequentially optimize Mk with the fixed M1,
· · · , Mk−1, Mk+1, · · · , MK . Hence, (6) can be rewritten as:

min
Mk

J = Ak + wpk Jk

+ λ
K∑
`=1
`6=k

∑
i,j

(
dMk

(xki ,x
k
j )− dM`

(x`i ,x
`
j)
)2
, (7)

where Ak is a constant term.
To learn the distance metric Mk, we employ a gradient-

based scheme. After some algebraic simplification, we can
obtain the gradient as:

∂J

∂Mk
= wpk

∑
i,j

yijh
′(zij)C

k
ij

+ λ
K∑
`=1
`6=k

∑
i,j

(
1−

dM`
(x`i ,x

`
j)

dMk
(xki ,x

k
j )

)
Ck
ij , (8)

where zij and Ck
ij can be calculated respectively by:

Ck
ij = (xki − xkj )(x

k
i − xkj )

T , (9)

zij = τk − yij
(
µk − d2Mk

(xki ,x
k
j )
)
. (10)
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Ck
ij denotes the outer product of pairwise differences. h′(x)

is the derivative of h(x), h′(0) = 0 at the non-differentiable
point. In addition, we use derivations given as:

∂

∂Mk
dMk

(xki ,x
k
j ) =

1

2 dMk
(xki ,x

k
j )

Ck
ij , (11)

∂

∂Mk

(
dMk

(xki ,x
k
j )− dM`

(x`i ,x
`
j)
)2

= 2
(
dMk

(xki ,x
k
j )− dM`

(x`i ,x
`
j)
) ∂

∂Mk
dMk

(xki ,x
k
j )

=

(
1−

dM`
(x`i ,x

`
j)

dMk
(xki ,x

k
j )

)
Ck
ij . (12)

Then, matrix Mk can be obtained by using a gradient
descent algorithm:

Mk = Mk − β
∂J

∂Mk
, (13)

where β is the learning rate.
In practice, directly optimizing the Mahalanobis distance

metric Mk may suffer slow convergence and overfitting prob-
lems if data is very high-dimensional and the number of
training samples is insufficient. Therefore, we propose an
alternative method to jointly perform dimensionality reduction
and metric learning, which means a low-rank linear projection
matrix Lk ∈ Rsk×dk (sk < dk) is learned to project
each sample xki from the high-dimensional input space to a
low-dimensional embedding space, where the distance metric
Mk = Lk

TLk. Then, we differentiate the objective function
J with respect to Lk, and obtain the gradient as follows:

∂J

∂Lk
= 2Lk

(
wpk

∑
i,j

yijh
′(zij)C

k
ij

+ λ
K∑
`=1
`6=k

∑
i,j

(
1−

dM`
(x`i ,x

`
j)

dMk
(xki ,x

k
j )

)
Ck
ij

)
. (14)

Lastly, Lk can be obtained by a gradient descent rule:

Lk = Lk − β
∂J

∂Lk
. (15)

To make sure the learned metric Mk is a positive semidefinite
matrix after each iteration, we clip the spectrum of Mk =
Lk

TLk by singular value decomposition.
2) Step 2: Fix {Mk}Kk=1, Update w = [w1, w2, · · · , wK ]:

Then, we update w with the fixed {Mk}Kk=1 by the method
of Lagrange multipliers. We construct a Lagrange function as:

L(w, η) =
K∑
k=1

wpk Jk + A − η
( K∑
k=1

wk − 1
)
, (16)

in which A is a constant term.
Let ∂L(w,η)

∂wk
= 0 and ∂L(w,η)

∂η = 0, we have

∂L(w, η)

∂wk
= p wp−1k Jk − η = 0, (17)

∂L(w, η)

∂η
=

K∑
k=1

wk − 1 = 0. (18)

Algorithm 1: LM3L

Input: Training set {Xk}Kk=1 from K views; Learning
rate β; Parameter p, λ, µk and τk; Total iterative
number T ; Convergence error ε.

Output: Multiple metrics: M1,M2, · · · ,MK ; and
weights: w1, w2, · · · , wK .

// Initialization:
Initialize Lk = Isk×dk ,
wk = 1/K, k = 1, · · · ,K.

// Alternating optimization:
for t = 1, 2, · · · , T , do

for k = 1, 2, · · · ,K, do
Compute Lk by (14) and (15).

end for
Compute w according to (19).
Computer J (t) via (6).
if t > 1 and |J (t) − J (t−1)| < ε

Go to Output.
end if

end for
// Output distance metrics and weights:

Mk = Lk
TLk, k = 1, 2, · · · ,K.

Output M1,M2, · · · ,MK and w.

According to (17) and (18), wk can be updated as:

wk =

(
1/Jk

)1/(p−1)
K∑
k=1

(
1/Jk

)1/(p−1) . (19)

We repeat the above two steps until the algorithm meets a
certain convergence condition. The proposed LM3L algorithm
is summarized in Algorithm 1, where I ∈ Rsk×dk is a matrix
with 1’s on the diagonal and zeros elsewhere.

IV. LOCAL LARGE-MARGIN MULTI-METRIC LEARNING

A. Local Metric Learning

Considering a single feature set Xk = {xki ∈ Rdk}Ni=1

of X which is represented by the k-th type of feature, the
squared Mahalanobis distance between a pair of samples
xki and xkj under a specific local metric M

(q)
k ∈ Rdk×dk ,

q = 1, 2, · · · , Qk, can be calculated by:

d2
M

(q)
k

(xki ,x
k
j ) = (xki − xkj )

TM
(q)
k (xki − xkj ), (20)

where M
(q)
k ∈ Rdk×dk is a positive semi-definite (PSD)

matrix (M(q)
k � 0), and Qk is the total number of local

distance metrics corresponding to the k-th type of feature
representation.

Based on a set of local distance metrics {M(q)
k }

Qk

q=1, the
distance of each sample pair xki and xkj can be defined as a
convex combination by soft dividing the whole input space
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into different regions:

d2
{M(q)

k }
Qk
q=1

(xki ,x
k
j )

=

Qk∑
q=1

α
(q)
k (xki ,x

k
j ) d

2

M
(q)
k

(xki ,x
k
j )

= (xki − xkj )
T

(
Qk∑
q=1

α
(q)
k (xki ,x

k
j )M

(q)
k

)
(xki − xkj ), (21)

where α
(q)
k (xki ,x

k
j ) is nonnegative weight to measure the

importance of the q-th local metric to both xki and xkj , which
ensures the learned dissimilarity function of xki and xkj to
be local. In addition, a global metric M

(0)
k with a positive

constant weight α(0)
k (xki ,x

k
j ) = ck is complemented into (21)

to handle the part of the dissimilarity function shared by the
whole input space. Thus, the final distance (or dissimilarity
function) of a pair xki and xkj is given as:

d2Mk
(xki ,x

k
j )

= (xki − xkj )
T

(
Qk∑
q=0

α
(q)
k (xki ,x

k
j )M

(q)
k

)
(xki − xkj )

= (xki − xkj )
T Mk(x

k
i ,x

k
j ) (x

k
i − xkj ), (22)

where the PSD matrix Mk(·, ·) ∈ Rdk×dk is a matrix-valued
function, and it is weighted by Qk + 1 matrices for a sample
pair xki and xkj as follows:

Mk(x
k
i ,x

k
j ) =

(
Qk∑
q=0

α
(q)
k (xki ,x

k
j )M

(q)
k

)
. (23)

Importantly, the weight α(q)
k (xki ,x

k
j ) in the local distance

function (23) is defined as:

α
(q)
k (xki ,x

k
j ) =

{
ck if q = 0

u
(q)
k (xki ) u

(q)
k (xkj ) otherwise

, (24)

in which u
(q)
k (xki ) is a gating model to assign weight to the

q-th local distance metric in a data-dependent way. In our
experiments, we adopt a softmax gating function [34], which
is given as follows:

u
(q)
k (xki ) =

exp

(
v
(q)
k

T
xki + b

(q)
k

)
Qk∑
m=1

exp

(
v
(m)
k

T
xki + b

(m)
k

) , (25)

for the q-th local metric, where v
(q)
k and b(q)k are the weighting

and bias parameters of this gating function respectively, and
we have u(q)k (xki ) ≥ 0 for 1 ≤ q ≤ Qk and 1 ≤ k ≤ K. This
gating function parametrized by the parameters {v(q)

k , b
(q)
k }

Qk

q=1

is used to compute the weight (or probability) that an input
vector xki belongs to each local distance metric space. For
example, a face image can be assigned to multiple metric
spaces (e.g., age, expression, gender, race, etc.) with different
weights. After having learned the parameters {v(q)

k , b
(q)
k }

Qk

q=1

on the training data, this softmax gating function can be easily
applied to other input vectors in a data-dependent way.

Then, we formulate our local metric learning (LML) method
with respect to the single feature type k under the same large
margin framework as used in (3):

min
{M(q)

k }
Qk
q=0, {v

(q)
k , b

(q)
k }

Qk
q=1

Jk =∑
i,j

h
(
τk − yij

(
µk − d2Mk

(xki ,x
k
j )
))
. (26)

The objective function (26) is not jointly convex to {M(q)
k }

Qk

q=0

and {v(q)
k , b

(q)
k }

Qk

q=1, and it is non-trivial to find a global
solution. To obtain these parameters, we employ the alternating
optimization strategy and the gradient descent based method
to achieve the local optimal solution.

1) Step 1: Fix {M(r)
k }

Qk

r=0 \ M
(q)
k and {v(r)

k , b
(r)
k }

Qk

r=1,
Update M

(q)
k : The partial derivative of Jk with regard to

M
(q)
k , 0 ≤ q ≤ Qk, can be calculated by:

∂Jk

∂M
(q)
k

=
∑
i,j

yijh
′(zij)α

(q)
k (xki ,x

k
j )C

k
ij , (27)

where zij = τk−yij
(
µk−d2Mk

(xki ,x
k
j )
)
, and Ck

ij is the outer
product of pairwise differences given by (9).

2) Step 2: Fix {M(r)
k }

Qk

r=0 and {v(r)
k , b

(r)
k }

Qk

r=1 \
{v(q)

k , b
(q)
k }, Update v

(q)
k and b(q)k : The partial derivative of

Jk with regard to v
(q)
k and b(q)k can be computed by:

∂Jk

∂v
(q)
k

=
∑
i,j

yijh
′(zij)

Qk∑
m=1

u
(m)
k (xki )u

(m)
k (xkj )d

2

M
(m)
k

(xki ,x
k
j )

×
(
[δ(q −m)− u(q)k (xki )]x

k
i + [δ(q −m)− u(q)k (xkj )]x

k
j

)
,

(28)

∂Jk

∂b
(q)
k

=
∑
i,j

yijh
′(zij)

Qk∑
m=1

u
(m)
k (xki )u

(m)
k (xkj )d

2

M
(m)
k

(xki ,x
k
j )

×
(
δ(q −m)− u(q)k (xki ) + δ(q −m)− u(q)k (xkj )

)
, (29)

in which the delta function δ(q − m) = 1 if q = m and 0
otherwise for q = 1, 2, · · · , Qk.

We repeat the above two steps until the algorithm reaches
certain convergence conditions. Moreover, we also decompose
M

(q)
k into M

(q)
k = L

(q)
k

T
L
(q)
k in the objective function (26) to

reduce the number of parameters in optimization.

B. Local Large-Margin Multi-Metric Learning

Local metric learning (LML) only learns a set of local
distance metrics for each type of feature such that it cannot
exploit discriminative information of other types of features.
To utilize multiple features, we also propose a local large-
margin multi-metric learning (L2M3L) method by integrating
the local metric learning (LML) (26) and the large-margin
multi-metric learning (LM3L) (6) into a unified framework.
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Algorithm 2: L2M3L

Input: Training set {Xk}Kk=1 from K views; Local
metric number {Qk}Kk=1; Learning rate β;
Parameter p, λ, µk, τk; Total iterative number T ;
Convergence error ε.

Output: Metrics:
{
{M(q)

k }
Qk

q=0

}K
k=1

; Weights: {wk}Kk=1;

Gating model:
{
{v(q)

k , b
(q)
k }

Qk

q=1

}K
k=1

.
// Initialization:

Initialize {M(q)
k = Idk×dk}Qk

q=0 and wk = 1/K,
{v(q)

k ∼ U(0, 1), b
(q)
k = 0}Qk

q=1, k = 1, 2, · · · ,K.
// Alternating optimization:

for t = 1, 2, · · · , T , do
for k = 1, 2, · · · ,K, do

for q = 0, 1, · · · , Qk, do
// Step 1: Update M

(q)
k

Calculate ∂J/∂M(q)
k by (31).

M
(q)
k ←−M

(q)
k − β ∂J/∂M

(q)
k .

end for
end for
for k = 1, 2, · · · ,K, do

for q = 1, 2, · · · , Qk, do
// Step 2: Update v

(q)
k and b(q)k

Compute ∂J/∂v(q)
k by (32).

Compute ∂J/∂b(q)k by (33).
v
(q)
k ←− v

(q)
k − β ∂J/∂v

(q)
k .

b
(q)
k ←− b

(q)
k − β ∂J/∂b

(q)
k .

end for
end for
// Step 3: Update {wk}Kk=1

Calculate {wk}Kk=1 by (34).
Calculate objective J (t) using (30).
if t > 1 and |J (t) − J (t−1)| < ε

Go to Output.
end if

end for
Output

{
{M(q)

k }
Qk

q=0, {v
(q)
k , b

(q)
k }

Qk

q=1, wk

}K
k=1

.

The objective function of the L2M3L is formulated as:

min{
{M(q)

k }
Qk
q=0, {v

(q)
k , b

(q)
k }

Qk
q=1, wk

}K

k=1

J =

K∑
k=1

wpk Jk + λ
K∑

k,`=1
k<`

∑
i,j

(
dMk

(xki ,x
k
j )− dM`

(x`i ,x
`
j)
)2
,

s.t.
K∑
k=1

wk = 1, wk ≥ 0, λ > 0. (30)

It is obviously that the LM3L is a special case of the L2M3L
method where only several global distance metrics are jointly
solved. To minimize the optimization problem (30), we adopt
similar methods as used in both LM3L and LML.

1) Step 1: Fix
{
{M(r)

k }
Qk

r=0, {v
(r)
k , b

(r)
k }

Qk

r=1, wk

}K
k=1
\

M
(q)
k , Update M

(q)
k : We update M

(q)
k , 1 ≤ k ≤ K,

0 ≤ q ≤ Qk, by fixing other parameters. The partial derivative
of J with regard to M

(q)
k can be calculated by:

∂J

∂M
(q)
k

= wpk

∑
i,j

yijh
′(zij)α

(q)
k (xki ,x

k
j )C

k
ij

+ λ
K∑
`=1
`6=k

∑
i,j

(
1−

dM`
(x`i ,x

`
j)

dMk
(xki ,x

k
j )

)
α
(q)
k (xki ,x

k
j )C

k
ij , (31)

where zij = τk−yij
(
µk−d2Mk

(xki ,x
k
j )
)
, and Ck

ij is the outer
product of pairwise differences given by (9).

2) Step 2: Fix
{
{M(r)

k }
Qk

r=0, {v
(r)
k , b

(r)
k }

Qk

r=1, wk

}K
k=1
\

{v(q)
k , b

(q)
k }, Update v

(q)
k and b(q)k : The partial derivative of

J with respect to v
(q)
k and b

(q)
k , 1 ≤ k ≤ K, 1 ≤ q ≤ Qk,

can be computed by (32) and (33), where zij = τk−yij
(
µk−

d2Mk
(xki ,x

k
j )
)
.

3) Step 3: Fix
{
{M(r)

k }
Qk

r=0, {v
(r)
k , b

(r)
k }

Qk

r=1

}K
k=1

, Update

{wk}Kk=1: Following the same procedures as in LM3L, we
update wk by utilizing the method of Lagrange multipliers. In
this fashion, the closed-form solution can be obtained, and the
wk, 1 ≤ k ≤ K, is given by:

wk =

(
1/Jk

)1/(p−1)
K∑
k=1

(
1/Jk

)1/(p−1) . (34)

Then, we alternately update above three steps until the
proposed L2M3L method reaches a certain convergence con-
dition, and then we will find the optimal solution, {M(q)

k }
Qk

q=0,
{v(q)

k , b
(q)
k }

Qk

q=1, wk, k = 1, 2, · · · ,K, of the L2M3L method.
The Algorithm 2 lists the main steps of the L2M3L method.

After obtaining the multiple local and global distance met-
rics: {M(q)

k }
Qk

q=0, gating model: {v(q)
k , b

(q)
k }

Qk

q=1, and weight
wk for all the k = 1, 2, · · · ,K, the distance of two multi-
feature data points xi and xj under the learned local metrics
by L2M3L can be calculated as follows:

d2L2M3L(xi,xj)

=
K∑
k=1

wk (xki − xkj )
T

(
Qk∑
q=0

α
(q)
k (xki ,x

k
j )M

(q)
k

)
(xki − xkj )

=
K∑
k=1

wk d
2
Mk

(xki ,x
k
j ). (35)

V. EXPERIMENTS

To evaluate the effectiveness of the proposed LM3L, LML
and L2M3L methods, we conducted face and kinship verifica-
tion under unconstrained conditions on three real-world face
datasets, i.e., the Labeled Faces in the Wild (LFW) [9], the
YouTube Faces (YTF) [10], and the KinFaceW-II [5].

Baseline: We evaluated the proposed methods with three
baseline methods using different metric learning strategies:
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∂J

∂v
(q)
k

= wp
k

∑
i,j

yijh
′(zij)

Qk∑
m=1

u
(m)
k (xk

i )u
(m)
k (xk

j )d
2

M
(m)
k

(xk
i ,x

k
j )
(
[δ(q −m)− u

(q)
k (xk

i )]x
k
i + [δ(q −m)− u

(q)
k (xk

j )]x
k
j

)
+

λ

K∑
`=1
6̀=k

∑
i,j

(
1−

dM`(x
`
i ,x

`
j)

dMk (x
k
i ,x

k
j )

)
Qk∑
m=1

u
(m)
k (xk

i )u
(m)
k (xk

j )d
2

M
(m)
k

(xk
i ,x

k
j )
(
[δ(q −m)− u

(q)
k (xk

i )]x
k
i + [δ(q −m)− u

(q)
k (xk

j )]x
k
j

)

=
∑
i,j

wp
kyijh

′(zij) + λ

K∑
`=1
`6=k

(
1−

dM`(x
`
i ,x

`
j)

dMk (x
k
i ,x

k
j )

)
×

Qk∑
m=1

u
(m)
k (xk

i )u
(m)
k (xk

j )d
2

M
(m)
k

(xk
i ,x

k
j )
(
[δ(q −m)− u

(q)
k (xk

i )]x
k
i + [δ(q −m)− u

(q)
k (xk

j )]x
k
j

)
, (32)

∂J

∂b
(q)
k

= wp
k

∑
i,j

yijh
′(zij)

Qk∑
m=1

u
(m)
k (xk

i )u
(m)
k (xk

j )d
2

M
(m)
k

(xk
i ,x

k
j )
(
δ(q −m)− u

(q)
k (xk

i ) + δ(q −m)− u
(q)
k (xk

j )
)

+

λ

K∑
`=1
6̀=k

∑
i,j

(
1−

dM`(x
`
i ,x

`
j)

dMk (x
k
i ,x

k
j )

)
Qk∑
m=1

u
(m)
k (xk

i )u
(m)
k (xk

j )d
2

M
(m)
k

(xk
i ,x

k
j )
(
δ(q −m)− u

(q)
k (xk

i ) + δ(q −m)− u
(q)
k (xk

j )
)

=
∑
i,j

wp
kyijh

′(zij) + λ

K∑
`=1
`6=k

(
1−

dM`(x
`
i ,x

`
j)

dMk (x
k
i ,x

k
j )

)
×

Qk∑
m=1

u
(m)
k (xk

i )u
(m)
k (xk

j )d
2

M
(m)
k

(xk
i ,x

k
j )
(
δ(q −m)− u

(q)
k (xk

i ) + δ(q −m)− u
(q)
k (xk

j )
)
, (33)

• Single Metric Learning (SML): we learned a single dis-
tance metric by using objective function (3) with single-
view feature representation;

• Concatenated Metric Learning (CML): we first concate-
nated different feature representations into a long feature
vector and then employed objective function (3) to learn
a distance metric;

• Individual Metric Learning (IML): we learned the dis-
tance metric for each feature representation under the
objective function (3) and then adopted the same weight
(i.e., wk = 1/K) to calculate the dissimilarity between a
pair of face images by (5).

In addition, several free parameters p, β, λ, µk, τk, Qk and
ck of our LM3L, LML and L2M3L methods were empirically
set as 2, 0.001, 0.1, 5, 1, 3 and 1 for all the k = 1, 2, · · · ,K re-
spectively, unless stated otherwise. The following subsections
detail the experimental settings and results on three datasets.

A. Face Verification on LFW

1) Dataset and Settings: The LFW dataset [9] contains
more than 13000 face images of 5749 subjects collected
from the web with large variations in expression, pose, age,
illumination, resolution, etc. There are two training paradigms
for supervised learning on this dataset: image restricted and
image unrestricted. In our experiments, we used the image
restricted setting where only the pairwise label information
is provided to train our methods. We followed the standard
evaluation protocol on the “View 2” dataset [9] which consists
of 3000 matched pairs (or positive pairs) and 3000 mismatched
pairs (or negative pairs), and all these pairs were divided into

10 folds and each fold contains 300 positive pairs and 300 neg-
ative pairs of face iamges. We used the LFW-a dataset for our
experimental evaluation, and thus our setting on this dataset
falls into the category of image-restricted, label-free outside
data. For each face image, we first cropped it into 80×150
pixels from its center to remove the background information,
and then extracted three types of feature representations:
• Dense SIFT (DSIFT) [35]: Firstly, we densely sampled

SIFT descriptors on each 16×16 patch without over-
lapping and obtained 45 SIFT descriptors. Then, we
concatenated these SIFT descriptors to form a 5760-
dimensional feature vector;

• LBP [23]: We divided each image into 8×15 non-
overlapping blocks, where the size of each block is
10×10. Then, we extracted a 59-dimensional uniform
pattern LBP feature for each block and concatenated them
to form a 7080-dimensional feature vector;

• Sparse SIFT (SSIFT): We used SSIFT feature provided
by [1], which first localized nine fixed landmarks in each
image and extracted SIFT descriptors over three scales
at these landmarks, and then concatenated these 27 SIFT
descriptors to result a 3456-dimensional vector.

For these three kinds of features, we employed whitened PCA
(WPCA) to project each feature vector into a 200-dimensional
feature subspace, respectively. Note that we first employed
the WPCA on the training set to compute the projection
matrix, and then we used this projection matrix to reduce the
dimension of each sample in the training set and testing set.

2) Comparison with Baseline Methods: Table I records
the verification accuracy with standard error of our methods
and baseline methods by different metric learning strate-
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TABLE I
COMPARISONS OF THE MEAN VERIFICATION ACCURACY (%) WITH
SEVERAL BASELINE METHODS ON THE LFW UNDER CATEGORY OF

IMAGE-RESTRICTED, LABEL-FREE OUTSIDE DATA.

Method Feature Accuracy (%)
SML DSIFT 84.30± 0.69
SML LBP 83.83± 0.41
SML SSIFT 84.58± 0.36
CML All 82.40± 0.51
IML All 87.78± 0.58

LML DSIFT 86.33± 0.66
LML LBP 85.98± 0.44
LML SSIFT 86.75± 0.34
LM3L All 89.57± 0.48
L2M3L All 90.23± 0.55

gies on the LFW dataset under category of image-restricted,
label-free outside data. We see that the LM3L and L2M3L
methods consistently outperforms these baseline methods in
terms of the mean verification accuracy. Compared with SML
(or LML), the LM3L (or L2M3L) learns multiple distance
metrics with multi-feature representations, such that more
discriminative information can be exploited for verification.
Compared with CML and IML, our LM3L and L2M3L jointly
learn multiple distance metrics so that the distance metrics
learned for different features can interact each other, therefore
more complementary information can be extracted for face
verification. We also observe that local metric leaning methods
(i.e., LML and L2M3L) obtain the better performance than
their global companions (i.e., SML and LM3L). These results
show that the LML and L2M3L can exploit local specificities
of data to improve performance of face verification.

3) Comparison with State-of-the-Art Methods: We also
compared our LM3L and L2M3L methods with several state-
of-the-art methods on the LFW dataset. These methods can
be categorized into metric learning based methods contain-
ing PCCA [27], DML-eig combined [36], CSML+SVM [7],
SFRD+PMML [6], Sub-SML [19], large margin local met-
ric learning (LMLML) [31], and discriminative deep met-
ric learning (DDML) [37]; and descriptor based methods
including pose adaptive filter (PAF) [38], high dimensional
vector multiplication (VMRS) [39], Hybrid on LFW3D [40],
and Spartans [41]. Table II tabulates the mean verification
accuracy with standard error of different methods and Fig. 1
shows ROC curves of several state-of-the-art methods on this
dataset. We see that the proposed LM3L and L2M3L methods
achieve competitive results compared with these state-of-the-
art methods except two methods: Sub-SML + Hybrid on
LFW3D [40] and HPEN + HD-LBP + DDML [11]. The
reason is that they both employed the powerful face alignment
techniques, and Sub-SML + Hybrid on LFW3D [40] adopted
more than 10 types of features and HPEN + HD-LBP +
DDML [11] exploited the over-complete high-dimensional
feature (i.e., 100K-dim HD-LBP) for face verification.

The reason that VMRS [39] outperforms L2M3L is that:
1) VMRS adopted 10 different features (i.e., LBP, TPLBP,
OCLBP, SIFT, Scattering, and their “sqrt root” versions);
2) VMRS used high-dimensional features, e.g., the 40887-
dimensional OCLBP, and the 96520-dimensional Scattering

TABLE II
COMPARISONS OF THE MEAN VERIFICATION ACCURACY (%) WITH
STATE-OF-THE-ART RESULTS ON THE LFW UNDER CATEGORY OF

IMAGE-RESTRICTED, LABEL-FREE OUTSIDE DATA, WHERE NOF DENOTES
THE NUMBER OF FEATURE USED IN EACH METHOD.

Method NoF Accuracy (%)
PCCA [27] 1 83.80± 0.40
Hybrid on LFW3D [40] 12 85.63± 0.53
DML-eig combined [36] 8 85.65± 0.56
LMLML [31] 1 86.13± 0.53
PAF [38] 1 87.77± 0.51
CSML+SVM [7] 6 88.00± 0.37
SFRD+PMML [6] 8 89.35± 0.50
Spartans [41] 1 89.69± 0.36
Sub-SML [19] 6 89.73± 0.38
TSML with feature fusion [42] 12 89.80± 0.47
DDML [37] 6 90.68± 1.41
VMRS [39] 10 91.10± 0.59
Sub-SML + Hybrid on LFW3D [40] 12 91.65± 1.04
HPEN + HD-LBP + DDML [11] 1 92.57± 0.36

LM3L 3 89.57± 0.48
L2M3L 3 90.23± 0.55
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Fig. 1. ROC curves of our methods and several state-of-the-art methods on
the LFW under category of image-restricted, label-free outside data.

feature; and 3) VMRS combined the non-linear dimensionality
reduction technique called Diffusion Maps (DM) [39] and
WPCA to obtain an additional improvement in accuracy. In
our methods, we used three low-dimensional features, where
the WPCA is used to reduce the dimensionality. The reason
that the performance of DDML [37] outperforms L2M3L is
that 1) The DDML employs 6 different features; and 2) The
DDML adopts a nonlinear distance metric learning method via
the neural network to exploit the nonlinearity of data points. In
our methods, we use three low-dimensional features to learn
several linear distance metrics.

4) Comparison of LM3L and L2M3L with λ = 0: When
λ = 0, we evaluated the LM3L (λ = 0) and L2M3L (λ = 0)
on LFW dataset under category of image-restricted, label-
free outside data (see Table III). Table III shows that the
regularization term of the LM3L and L2M3L can help improve
the verification accuracy. The reason is that the LM3L and
L2M3L seek a commonality of multiple features and make all
features more robust for face verification.
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TABLE III
COMPARISON OF LM3L AND L2M3L WHEN λ = 0 ON LFW DATASET

UNDER CATEGORY OF IMAGE-RESTRICTED, LABEL-FREE OUTSIDE DATA.

Method Feature Accuracy (%)
LM3L (λ = 0) LBP, DSIFT, SSIFT 88.02± 0.56
LM3L 89.57± 0.48
L2M3L (λ = 0) LBP, DSIFT, SSIFT 88.95± 0.60
L2M3L 90.23± 0.55

TABLE IV
COMPARISON OF THE MEAN VERIFICATION ACCURACY (%) WITH

BASELINE METHODS USING DIFFERENT METRIC LEARNING STRATEGIES
ON THE YTF UNDER THE IMAGE RESTRICTED SETTING.

Method Feature Accuracy (%)
SML CSLBP 73.66± 1.52
SML FPLBP 75.02± 1.67
SML LBP 78.46± 0.94
CML All 75.36± 2.37
IML All 80.12± 1.33

LML CSLBP 75.76± 1.59
LML FPLBP 75.78± 2.19
LML LBP 80.08± 2.06
LM3L All 81.28± 1.17
L2M3L All 81.72± 1.53

B. Video-based Face Verification on YTF

1) Dataset and Settings: The YTF dataset [10] consists of
3425 videos of 1595 different people collected from YouTube
site. There are also large variations in pose, illumination, and
expression in each video, and the average length of each
video clip is 181.3 frames. In our experiments, we followed
the standard evaluation protocol and evaluated our methods
for unconstrained video-based face verification on the 5000
video pairs. These 5000 pairs are equally divided into 10
folds and each fold contains 250 intra-personal pairs (posi-
tive pairs) and 250 inter-personal pairs (negative pairs). We
adopted the image restricted and image unrestricted protocols
to evaluate the proposed methods. For the image restricted
setting, we directly used three feature descriptors including
LBP, Center-Symmetric LBP (CSLBP) [10] and Four-Patch
LBP (FPLBP) [43] which are provided by [10]. Since all face
images have been aligned by the detected facial key points,
we simply averaged all the feature vectors within one video
clip to result a mean feature vector for each type of feature.
Then, we employed WPCA to reduce each feature into a 200-
dimensional feature vector.

2) Comparison with Baseline Methods: As in LFW dataset,
we also compared our methods with several baseline methods
using different metric learning strategies, i.e., SML, CML and
IML on the YTF dataset under the image restricted setting.
Table IV records the mean verification accuracy with standard
error of these metric learning methods on the YTF under
the image restricted setting. We see that the proposed LM3L
and L2M3L methods consistently perform better than these
baseline methods in terms of the mean verification accuracy;
and local based methods, LML and L2M3L, can make use
of local structures of samples to enhance the verification
accuracy. These two observations are in agreement with results
obtained on the LFW dataset.

TABLE V
COMPARISONS OF THE MEAN VERIFICATION ACCURACY WITH STANDARD

ERROR (%) WITH SEVERAL STATE-OF-THE-ART RESULTS ON THE YTF
UNDER THE IMAGE RESTRICTED SETTING.

Method Accuracy (%)
MBGS (LBP) [10] 76.40± 1.80
APEM (LBP) [24] 77.44± 1.46
APEM (fusion) [24] 79.06± 1.51
STFRD+PMML [6] 79.48± 2.52
MBGS+SVM	 [44] 78.90± 1.90
VSOF+OSS (Adaboost) [45] 79.70± 1.80
DDML (combined) [37] 82.34± 1.47
LMKMML [48] 82.70± 1.50
DMM+CFN [47] 82.80± 0.90
Eigen-PEP [46] 84.80± 1.40

LM3L 81.28± 1.17
L2M3L 81.72± 1.53
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Fig. 2. ROC curves of our methods and several state-of-the-art methods on
the YTF under the image restricted setting.

3) Comparison with State-of-the-Art Methods: We then
compared LM3L and L2M3L with state-of-the-art meth-
ods on the YTF dataset under the image restricted set-
ting. The compared methods include matched background
similarity (MBGS) [10], APEM [24], STFRD+PMML [6],
MBGS+SVM	 [44], VSOF+OSS (Adaboost) [45], DDML
[37], Eigen-PEP [46], deep mixture model and convolution-
al fusion network (DMM+CFN) [47], and LMKMML [48].
Table V lists the mean verification accuracy with the standard
error, and Fig. 2 shows ROC curves of our methods and several
state-of-the-art methods on the YTF dataset, respectively. We
can observe that our L2M3L method achieves competitive
results compared with most of these state-of-the-art methods
on this dataset under the image restricted setting. Additionally,
the Eigen-PEP obtains the best accuracy, the reason is that it
exploits intra-class variations between frames of each video
clip while our implementation simply takes the mean of all
frames for a video in feature representation.

4) Comparison with Deep Learning based Methods: We
also evaluated our LML, LM3L and L2M3L methods using
convolutional neural network (CNN) feature which recently
has achieved various promising results on face verification [2],
[12], [13]. In our implementation, we employed the VGG-Face
CNN model provided by [13] to compute CNN descriptor.
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TABLE VI
COMPARISON WITH DEEP LEARNING BASED METHODS ON THE YTF

DATASET UNDER IMAGE UNRESTRICTED SETTING.

Method Feature Accuracy (%)
SML CNN 93.92± 1.18
LML CNN 94.56± 1.24
LM3L CNN, CSLBP, FPLBP, LBP 94.75± 1.21
L2M3L CNN, CSLBP, FPLBP, LBP 94.90± 1.09

DFD-SID+JB [49] CNN 89.10± 0.40
DeepFace-single [2] CNN 91.4± 1.1
FaceNet [12] CNN 95.12± 0.39
Softmax (L2) [13] CNN 91.6
Embedding loss [13] CNN 97.3

Specifically, we only extracted CNN feature on the first 100
frames of each video at single scale. For each face image in
YTF dataset, we first resized it to size of 200×200 pixels and
cropped 100×100 region from its center, then we resized it
to 224×224 pixel image to compute 4096-dimensional CNN
feature vector. Finally, we averaged these CNN feature vectors
of the first 100 frames for each video, and each video was
represented by a 4096-dimensional vector. Moreover, each
feature vector was reduced to the size of 200 by PCA. Table VI
shows the mean verification accuracy of our proposed methods
and several deep learning based methods using CNN feature
(e.g., DeepFace [2], FaceNet [12], and VGG-Face CNN [13])
on the YTF under the image unrestricted setting. We see that
our LM3L and L2M3L can be comparable to these state-of-
the-art results on this dataset under this unrestricted setting.

The Face Net [12] and Embedding loss [13] are two current
state-of-the-art methods on YTF dataset. The reason that they
outperformed L2M3L is that:
• The Face Net [12] used about 200 million face images in

the model training, and the VGG-Face CNN model used
in our method used about 2.6 million face images.

• To extract CNN features for each face video, the Embed-
ding loss [13] selected the top 100 frames of this video
by ordering the faces by their facial landmark confidence
score. In our L2M3L, we only took the first 100 frames
by following the setting in the Face Net [12].

• The Face Net [12] and Embedding loss [13] are two
strongly-supervised learning methods, because they em-
ploy the triplet loss function which exploits the label
information of each face video of YTF dataset. Un-
like these methods, our L2M3L method is a weakly-
supervised learning method which only exploits the pair-
wise supervision from face video pairs.

In Table VI, the main aim of L2M3L and LML is to show that
1) our metric learning methods learn the favorable distance
metrics to improve the performance of Softmax (L2) [12]
(91.6%) when the CNN feature is used; and 2) L2M3L can
further improve the verification accuracy by integrating low-
level features and high-level features into a unified framework.

C. Kinship Verification on KinFaceW-II

1) Dataset and Settings: The KinFaceW-II [5] is a kinship
face dataset collected from the public figures or celebrities and
their parents or children. There are four kinship relations in

TABLE VII
COMPARISONS OF THE MEAN VERIFICATION ACCURACY (%) WITH

BASELINE METHODS USING DIFFERENT METRIC LEARNING STRATEGIES
ON THE KINFACEW-II DATASET.

Method Feature F-S F-D M-S M-D Mean
SML LE 76.2 70.1 72.4 71.8 72.6
SML LBP 66.9 65.5 63.1 68.3 66.0
SML TPLBP 71.8 63.3 63.0 67.6 66.4
SML SIFT 68.1 63.8 67.0 63.9 65.7
CML All 76.3 67.5 74.3 75.4 73.4
IML All 79.4 71.5 76.3 77.3 76.1

LML LE 76.8 74.2 76.6 73.8 75.4
LML LBP 66.0 64.8 67.8 66.8 66.4
LML TPLBP 68.6 66.2 65.4 70.8 67.8
LML SIFT 72.2 66.0 68.2 66.2 68.2
LM3L All 82.4 74.2 79.6 78.7 78.7
L2M3L All 82.4 78.2 78.8 80.4 80.0

the KinFaceW-II datasets: Father-Son (F-S), Father-Daughter
(F-D), Mother-Son (M-S) and Mother-Daughter (M-D), and
each relation includes 250 pairs of kinship images. Following
the experimental settings in [5], we constructed 250 positive
pairs (with kinship) and 250 negative pairs (without kinship)
for each relation. For each face image, we extracted four types
of feature representations as follows:

• LEarning-based descriptor (LE) [50]: Following the same
parameter settings used in [50], [5], we first obtained 200
cluster centers by k-means clustering, and then performed
vector quantization to obtain a 200-bin histogram feature
for the whole face image;

• LBP: A 256-bin histogram feature was extracted;
• TPLBP [43]: We obtained a 256-bin histogram feature

for each image by adopting the default setting in [43].
• SIFT: We densely sampled SIFT descriptors on 16×16

blocks with space of 8 pixels, and then computed a 200-
bin histogram feature for each image by adopting the
bag-of-visual-words model.

We adopted the 5-fold cross validation strategy for each of the
four relations in this dataset and the final results were reported
by the mean verification accuracy.

2) Comparison with Baseline Methods: We first compared
our method with SML, CML, and IML on the KinFaceW-
II dataset. Table VII records the mean verification accuracy
of our methods and baseline methods using various metric
learning strategies on the KinFaceW-II dataset for four kinship
relations, respectively. We also see that the LML, LM3L
and L2M3L consistently outperforms baseline metric learning
strategies on four relations in mean verification accuracy.

3) Comparison with Multiple Metric Learning Methods:
We further compared the LM3L and L2M3L methods with
several multiple metric learning methods for kinship verifica-
tion. These multiple metric learning methods include multiple
canonical correspondence analysis (MCCA) [33], multiple
NRML (MNRML) [5], discriminative multimetric learning
(DMML) [20], and PMML [6]. Table VIII reports the mean
verification accuracy of our methods and these multiple metric
learning methods. We observe that L2M3L achieves about
1.7% improvement over DMML and 1.3% over LM3L in terms
of the mean verification accuracy.
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TABLE VIII
COMPARISONS OF THE MEAN VERIFICATION ACCURACY (%) WITH

SEVERAL MULTIPLE METRIC LEARNING METHODS ON THE KINFACEW-II
DATASET.

Method Feature F-S F-D M-S M-D Mean
MCCA [33] All 74.0 72.1 74.8 75.3 74.1
PMML [6] All 77.7 72.4 76.3 74.8 75.3
MNRML [17] All 76.9 74.3 77.4 77.6 76.5
DMML [20] All 78.5 76.5 78.5 79.5 78.3

LM3L All 82.4 74.2 79.6 78.7 78.7
L2M3L All 82.4 78.2 78.8 80.4 80.0
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Fig. 3. The value of the objective function of LM3L and L2M3L versus
different number of iterations on the LFW dataset.

D. Discussion and Parameter Analysis

We examined several parameters that may affect the perfor-
mance of the LM3L and L2M3L methods on the LFW dataset
under category of image-restricted, label-free outside data.

1) Convergence Analysis: We first evaluated the conver-
gence of the LM3L and L2M3L methods with different number
of iterations. Fig. 3 shows the value of the objective function of
the LM3L and L2M3L versus different number of iterations
on the LFW dataset. We see that the convergence speed of
our methods is acceptable. The LM3L converges in 5 ∼ 6
iterations and the L2M3L method begins to keep stable after
the 10 iterations on the training set.

2) Effect of Different Feature Dimensions: Then we in-
vestigated the performance of the LM3L and large-margin
versus different feature dimensions. Fig. 4 shows the mean
verification accuracy of our multi-metric learning methods
versus different feature dimensions on the LFW dataset. We
notice that our methods can achieve stable performance when
the feature dimension of various features reaches 200. This is
the reason that we select 200 dimension for each feature via
WPCA in our experiments on this dataset.

3) Effect of Different Number of Local Metrics: Lastly,
we evaluated how the various number of local metrics (i.e.,
Qk) affects the LML and L2M3L methods. For the LML
method, we chose SSIFT feature for this evaluation due
to its good performance. Fig. 5 lists the mean verification
accuracy versus various Qk on the LFW dataset. We see that
increasing Qk improves the accuracy of LML and L2M3L, but
the performance of our local metric learning based methods
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Fig. 4. The mean verification accuracy of LM3L and L2M3L versus different
feature dimensions on the LFW dataset.
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Fig. 5. The mean verification accuracy of LM3L and L2M3L versus various
Qk (i.e., number of local metrics) on the LFW dataset.

remains stable or may even degrade if a too large number of
local metrics is adopted. The reason may be that learning more
local metrics requires a sufficient number of training samples
in model training. In the experiments, we adopted three local
metrics because it not only obtains acceptable results but also
reduces the computational time.

VI. CONCLUSION

In this paper, we have introduced a large-margin multi-
metric learning (LM3L) method for face and kinship verifica-
tion under unconstrained conditions. The LM3L jointly learns
multiple distance metrics under which more discriminative and
complementary information can be exploited. Moreover, to
better exploit the local structures of face images, we have
proposed a local metric learning (LML) and a local large-
margin multi-metric learning (L2M3L) methods to learn a set
of local metrics. Experimental results on three datasets show
that our method can achieve competitive results compared with
the state-of-the-art methods. For future work, we are interested
in applying our methods to other computer vision applications
such as person re-identification, action recognition and object
tracking to further show their effectiveness.
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